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Abstract—Data exploration is an essential task for gaining an
understanding of the potential and limitations of novel datasets.
This paper discusses the challenges related to exploring large
Automatic Identification System (AIS) datasets. We address these
challenges using trajectory-based analysis approaches imple-
mented in distributed computing environments using Spark and
GeoMesa. This approach enables the exploration of datasets
that are too big to handle within conventional spatial database
systems. We demonstrate our approach using a case study of 4
billion AIS records.

Index Terms—exploratory data analysis, mobility data, move-
ment data, travel time, spatiotemporal

I. INTRODUCTION

Massive ship movement datasets collected from the Au-
tomatic Identification System (AIS) have the potential to
improve maritime safety and efficiency of operations. Big AIS
datasets can serve as input for machine learning approaches,
for example, to extract ship routes and predict travel times
[1] or future destinations [2]. The performance and therefore
success of data-driven approaches depends strongly on the
quality of the input data, that is the suitability of the data for a
certain purpose. “Garbage in — garbage out” is a well known
concept in computer science and mathematics. Therefore, it is
necessary to evaluate data suitability.

Exploratory data analysis (EDA) [3] analyzes data sets
to determine what information the data contains. This is
commonly achieved by summarizing the dataset’s main char-
acteristics, often using visualizations. EDA goals are to assess
assumptions and suggest hypotheses, to select statistical tools,
and to provide a basis for further data collection if required.
EDA concepts for movement data have been covered exten-
sively by [4].

A. Problem statement

The majority of existing movement data analysis methods
cannot deal with large datasets since, in the past, movement
data analysis had to deal with limited data availability. There-
fore, traditional approaches quickly reach their limits as dataset
size increases. Since the limits of existing tools for storing,
processing, and visualizing movement data vary, there is no
one clear definition of the term “massive” in the context of
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movement data analysis. However, the common denominator is
that big or massive datasets cannot be handled by conventional
tools on a single machine.

To get a feeling for where the limits of conventional tools
may lie, we refer to the literature. For example, [5] report
a processing time of one day to create vessel tracks and
density maps of 60 thousand AIS records (one month of
AIS information from around Shetland) using ArcGIS. For
a global ship density grid using 1.5 billion AIS records, [6]
report a processing time of “about a week” using PostGIS
and GDAL. These lengthy processing times limit the extent
of data exploration that analysts can perform within a given
time frame.

Sampling is a common approach to reduce datasets to a size
that can still be handled. However, it is hard to extract useful
data samples for movement exploration tasks. To explore a
dataset and assess preliminary assumptions about the data, it
is necessary to be able to look at the whole dataset since
sampling can reinforce assumptions.

While the above mentioned challenges concern all move-
ment datasets, maritime movement data presents additional
challenges. Maritime vessel trip properties vary significantly,
for example, regarding duration (from minutes to weeks) and
spatial extent (from local to global). Furthermore, AIS data
sources usually do not provide complete global coverage with-
out gaps but are limited to certain regions. Therefore, vessel
AIS tracks may contain long observation gaps. Additionally,
reported information on movement speed and direction, trip
destination [5], vessel identity [6], time stamps [7] and more
are not always reliable.

To address these challenges, it is necessary to develop dis-
tributed computing approaches for maritime movement data.
Developments in this direction include, for example [8]-[11].

B. Contribution

There is a lack of established EDA tools as well as a lack
of literature on best practices for applying EDA to movement
data in general [12] and AIS data in particular. To address the
current lack of best practices, this paper proposes concepts
for the systematic exploration of large AIS datasets. We
demonstrate these concepts using a case study of a dataset with
4 billion records. We cover analyses ranging from raw AIS
records (II-A), to continuous vessel tracks (II-B) and, finally



trajectories of individual vessel journeys with meaningful start
and end locations at harbors or anchoring sites (II-C). To
demonstrate exploration for a specific machine learning task,
we try to assess the potential for travel time prediction based
on trajectories (II-D).

The remainder of this paper is structured as follows: Sec. II
presents our proposed AIS data exploration concepts including
establishing a first overview of the data, considering con-
tinuous movement tracks, and finally extracting semantically
meaningful trajectories and their potential for travel time
modelling. Finally, Sec. III sums up our conclusions and
provides an outlook for future work.

II. EXPLORING 4 BILLION AIS RECORDS

In our case study, we use AIS data published by the Danish
Maritime Authority! for the year 2017. Each one-day CSV
file has a size of around 2 GB (uncompressed). In total, the
dataset consists of 4 billion records with 22 attributes.

To store this data for distributed processing, we use Ge-
oMesa Accumulo. GeoMesa provides fast spatiotemporal in-
dexing [14] to help store and access spatiotemporal data.
GeoMesa also provides spatial analysis functions that can be
called by Apache Spark. Spark is a well-established general-
purpose cluster-computing framework first proposed by [13].
GeoMesa was chosen due to its mature support for spatial
vector data and the ability to publish data stored in GeoMesa
via GeoServer using standardized OGC web services, such as
WMS and WFS. By supporting these standards, any standards-
compliant client application can be used to visualize the data.

A. Establishing an Overview

The first step in our data exploration framework is to
establish an overview by exploring the raw input data records
and comparing the results with our assumptions. This includes
summary statistics of different record attributes, as well as an
assessment of spatiotemporal extent and gaps in the data.

Looking at the data attributes, for example, we find that the
dataset contains records from 89,926 distinct MMSIs (Mar-
itime Mobile Service Identity, a nine-digit id which identifies
ships and other maritime objects; MMSIs should be unique
but user error can lead to multiple vessels using the same
identifier).

Concerning the femporal extent of the dataset and potential
gaps, we assume that the dataset should cover the whole year
without gaps. Indeed, results show that the number of records
per day is quite stable, usually ranging between 10 and 12
million records per day. There are no longer periods without
any data.

Concerning the spatial extent, we assume that our dataset
should cover Danish waters and surrounding areas. However,
results show many points outside of the expected region. This
could be because of data errors since some minimum and
maximum latitude and longitude values seem implausible.
It could also mean that the dataset covers a larger than
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Fig. 1. Spatial extent: raw one-day tracks of 265 vessels on long-distance
voyages grouped by MMSI and date. (Background map ©OpenStreetMap
contributors.

expected area. To check if individual records are part of
plausible movements, it is necessary to aggregate records into
continuous tracks.

B. Aggregating Continuous Tracks

The next step is to connect the location records of individ-
ual vessels to form continuous tracks. A common approach
used when working with spatial databases is to aggregate
AIS records into LineStrings by grouping the chronologically
sorted records by MMSI (and optionally by date or another
time unit). This approach can be translated to Spark (or Spark-
SQL). Based on the assumption that many vessels operate
only in a small area, but some should travel long distances,
including voyages between different continents, we selected
all records of vessels that reported at least one destination
in Asia in 2017. (Since destination is a free text field, a
list of potential destination names was compiled manually.)
Fig. 1 shows resulting track lines for the 265 vessels in
this sample. The pronounced vertical and horizontal lines in
Fig. 1 indicate errors in the position data that require data
cleaning. Furthermore, tracks crossing the North Atlantic and
Mediterranean show that the dataset covers a much larger area
than expected. (Further inspection shows that positions in the
Atlantic are not available for the whole year but are limited
to the period between May and December 2017.)

Tracks generated by grouping AIS records by MMSI and
date aggregate all movements of a vessel during one day.
However, these tracks do not represent semantically mean-
ingful trajectories (individual vessel journeys) with a start
and end at a meaningful location (harbor or other anchoring
site). Meaningful trajectories can be extracted by splitting
continuously observed movement tracks at stops, which have
to be detected. Additionally, since AIS sources are limited to a
certain coverage area, they cannot ensure continuous observa-
tions. Therefore, tracks should also be split at observation gaps
to avoid misinterpretations, such as, for example, exaggerated
travel times due to an unobserved stop.



Fig. 2. Full set of trajectories between July and December 2017 (n=144, 870).

Since a single vessel journey can take weeks, it would be
insufficient to generate daily tracks and to split them into
individual trajectories afterwards. Instead, longer time spans
would have to be aggregated (resulting in longer computation
times and potential memory issues) or, alternatively, trajecto-
ries would have to be stitched together in a later processing
step. To address this issue, we propose an iterative approach
that can build trajectories quickly and does not run out of
memory (as long as individual trajectories fit into memory).

C. Extracting Trajectories

Our proposed trajectory aggregation approach solves some
interesting challenges: 1) processing massive amounts of tra-
jectory data where 2) operations only produce correct results
if applied to a complete and chronologically sorted group of
position records. Our implementation is based on the Sec-
ondary Sort pattern [15] and on Spark’s aggregator concept.
With Secondary Sort, records are first grouped by a key, and
when iterating over all records within a group, the records will
be sorted by a certain criterion. The result of this process, an
iterator, is then used by an aggregator that implements the
logic required to build trajectories based on gaps and stops
detected in the dataset.

It has to be noted that building trajectories using Spark
core libraries? can be challenging: Spark provides high-level
functions for grouping and aggregating records, however these
are mostly geared towards dealing with unsorted data. When
using high-level Spark core functionality incorrectly, an ag-
gregator needs to collect and sort the entire trajectory in
the main memory of a single processing node. Consequently,
when dealing with large datasets, out-of-memory errors are
frequently encountered. The third-party library spark-sorted?
provides a higher-level abstraction by wrapping the complex
low-level Spark functionality, thus allowing us to: 1) group
a massive dataset by a key 2) sort the records within each
group by timestamp and 3) iteratively process the sorted
records of the group in such a way that they never need to be
materialized in memory all at once. As shown in the Scala code
skeleton provided in the appendix, iterator-based streaming

2Spark 2.4.5, at the time of writing
3https://github.com/tresata/spark-sorted

Fig. 3. Trajectories passing Gothenburg between July and December 2017.

of the sorted data is provided by spark-sorted’s groupSort
function (line 11). A trajectory can be aggregated (line 12)
one position at a time (line 35). Resampling, compression, and
segmentation can be applied on-the-fly as needed: Whenever
a new position is processed (line 51), the trajectory can be
checked for a segmentation criterion, such as an observation
gap or detected stop (line 52). If a segmentation criterion is
detected, the current trajectory can be finalized and a new one
can be started at the current position (line 40). This succinct
approach supports processing movement datasets of arbitrary
size within the Spark framework.

Fig. 2 shows the resulting trajectories for the time between
July and December 2017 (which corresponds to the time range
for which position data in the North Atlantic is available).
The minimum trajectory duration is set to 1 hour. Shorter
trajectories are discarded for this exploratory analysis. Tra-
jectories are split at observation gaps that are longer than
24 hours. Furthermore, trajectories are down-sampled to 1
hour sampling intervals. This down-sampling mostly affects
sections of trajectories that fall within the terrestrial AIS
coverage since satellite AIS reporting intervals are already
long. Additionally, outliers resulting in unrealistic speeds were
removed. This process results in 144,870 trajectories and
takes around 1 hour to compute4. Of course, the number of
trajectories varies based on the minimum duration and split
criteria.

For storage and visualization purposes, trajectories are
commonly summarized using MMSI, start time, end time,
and LineString geometry. The resulting trajectories provide
a convenient way to access continuously observed vessel
voyages. For example, Fig. 3 shows trajectories filtered based
on a spatial intersection with a bounding box surrounding
Gothenburg, Sweden. (Gothenburg was chosen as one of the
focus areas of our exploration efforts since it is one of the
busiest ports in the region around Denmark.) However, using
this trajectory model, it is only possible to determine travel
times between trip start and end locations but not for arbitrary

40ur cluster comprises six data nodes: three nodes with two Intel Xeon
E5-2430L CPUs and 32G RAM, and three nodes with two Intel Xeon E5-
2660 v3 and 64G RAM. Operating system and HDFS file system reside on
SSDs. The setup is based on Apache Hadoop 2.7 and managed with Ambari
2.6.



Fig. 4. Trajectories between Gothenburg and Gibraltar between July and
December 2017. Red dots mark trajectory start and end locations.

locations along the trajectory. This means that a lot of travel
time information is lost. To avoid this loss of information, we
propose to also store time information along the trajectory. In
spatial databases like PostGIS, this can be achieved by storing
time stamps in the measure value of LineStringM features
[16]. GeoMesa, however, currently does not provide support
for LineStringM geometries. We therefore opt for storing the
sequence of time stamps in a separate field.

D. Assessing the Potential for Travel Time Prediction

Data-based travel time predictions can improve port op-
erations such as pilot and berth planning, as well as other
hinterland logistics operations. Research is targeting both long-
term and short-term predictions which aim to predict the
arrival date or the more specific arrival time, respectively.

a) Long-term predictions: As previous analysis steps
showed, our dataset has the potential to help train prediction
models for voyages crossing the North Atlantic and the
Mediterranean. We can apply both spatial and temporal filters
to the extracted trajectories to determine how much training
data is available for a certain origin/destination combination.

For example, on the route between Gothenburg and Gibral-
tar (Fig. 4), we detected 83 trips, mostly by cargo vessels
and tankers. (Gibraltar was chosen due to its strategically
important location at the entrance to the Mediterranean.)
The corresponding travel times are shown in Fig. 5. The
visualization shows no clear seasonal trends in the travel times.
Mean travel times are 154+25 or 152+23 hours (around 6
days), depending on the direction (Tab. I). The map view
(Fig. 4) shows one clear outlier route visible as a straight line
crossing France, as well as one vessel circumnavigating the
UK in the North.

b) Short-term predictions: For the analysis of short-
distance trips, the previously used aggregation with a resam-
pling interval of 1 hour is too coarse. Therefore, a second set of
trajectories was computed with a minimum gap duration of 15
minutes and a resampling interval of 1 minute. Additionally,
the analysis area was restricted to the Skagerrak/Kattegat
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Fig. 5. Travel times between Gothenburg and Gibraltar [in hours] (positive:
travel time Gothenburg to Gibraltar, negative: vice versa).

TABLE I
TRAVEL TIME STATISTICS FOR THE ROUTE BETWEEN GOTHENBURG AND
GIBRALTAR [IN HOURS].

to Gibraltar | to Gothenburg
Min 35 115
Q1 144 141
Median 157 149
Q3 168 157
Max 207 216
Mean 154 152
Stdev 25 23

region (including most of the waters between Denmark and
Sweden). Even though the resampling interval is only 1
minute, this still reduces the dataset size considerably, since
all records of stationary vessels are removed by the stop
detection process and segments with dense reporting intervals
are thinned out.

Looking at the resulting trajectories, for example, the route
between Gothenburg and Kiel is mostly travelled by passenger
vessels. Mean travel times are 14+0.6 hours. Travel times do
not exhibit seasonal variations but they do vary slightly by day
of the week, as shown in Fig. 6. Indeed, an investigation into
official ferry schedules reveals that the ferry trip should take
14.5h on weekdays and 15.5h on weekends, thus confirming
our data exploration results. Longer travel times and larger
variations are observed for other ship types. A travel time
prediction model for passenger vessels on this route would
therefore provide better results than for other vessel types.

Beyond vessel type, AIS also provides other vessel in-
formation such as its size (length and width) or typical
speeds (SOG). We assume that size and typical speed should
be valuable explanatory variables for travel time prediction
models. To test this assumption, we compute typical speeds for
each vessel, by determining the approximate 90" percentile of
reported SOG where SOG > 1. Fig. 7 shows the correlation
between typical vessel speeds (shipSog) and travel times for
the route between Gothenburg and Helsingborg.

By fitting a linear regression model to explain travel time
using the 90" speed percentiles (SOG90%), we can determine
that up to 33% of the total variation on this route is explained
by the 90" speed percentile. The relative RMSE (rRMSE)
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[in hours over knots].

ranges between 17.2% and 19.5% (Tab. II). Adding ship length
(discarding records with length > 200m) to the model further
improves the results to rRMSEs between 15.8% and 17.6%
(Tab. III).

While these results indicate that it may be promising to
build a predictor using these variables, care should be taken
not to over-generalise based on individual routes. However,
these exploratory analyses provide valuable input for feature
engineering and provide grounds for discussion with domain
experts.

III. CONCLUSION AND OUTLOOK

We have presented an exploratory data analysis for mas-
sive AIS datasets, including concrete examples of exploring
a dataset of 4 billion records using distributed computing

TABLE 11
LINEAR REGRESSION MODEL SOG90TH TRAINING SUMMARY

All types Cargo | Tanker
Coefficient -0.397 | -0.3878 -0.332
Intercept 15.274 15.033 14.467
RMSE 2.059 1.998 1.857
rRMSE 19.3% 19.5% 17.2%
r2 0.299 0.328 0.197

TABLE III
LINEAR REGRESSION MODEL SOG90TH+LENGTH TRAINING SUMMARY

All types Cargo Tanker
Coefficient | -0.231/-0.026 | -0.166/-0.0372 | -0.121/-0.030
Intercept 15.949 16.435 14.989
RMSE 1.878 1.704 1.700
rRMSE 17.6% 16.6% 15.8%
r2 0.417 0.515 0.315

approaches. We have proposed core concepts for a three step
EDA process that covers: 1) establishing an overview by
exploring raw movement data records, 2) exploring large-
scale movement patterns by aggregating continuous movement
tracks, and 3) understanding connections by extracting trajec-
tories of individual vessel journeys between meaningful start
and end locations.

Since there is a general lack of established EDA tools
for movement data, the technical implementation of the ex-
ploration is up to the individual analyst or researcher. In
this context, we have discussed various challenges that need
to be overcome to perform AIS analyses, including large
variations in trajectory length and duration, observation gaps,
as well as data errors. We have proposed trajectory aggregation
approaches that account for these issues. Finally, we demon-
strated how EDA can support feature engineering for machine
learning, using maritime travel time prediction as an example.

Recent developments regarding trajectory data handling in
distributed environments (for example [17]) underline the
continued need for movement data specific tools that can deal
with large amounts of data. To support analysts and researchers
with assessing data suitability for different purposes, these data
indexing and querying tools need to be combined with solid
exploration concepts. However, the heterogeneity of movement
data applications and datasets presents a major challenge for
the development of general-purpose data exploration tools
[12]. Therefore, domain-specific developments will be nec-
essary to provide exploration solutions that can be efficiently
used in the maritime domain.
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IV. APPENDIX

import com.tresata.spark.sorted.PairRDDFunctions._

object CreateTrajectories |

def main(args: Array|[String]): Unit = {
val spark: SparkSession = SparkSession.builder.appName ("CreateTrajectories") .getOrCreate ()
import spark.implicits._

val aisRecordsRDD: RDD[ (Int, AISRecord)] = Source.getRecords () // RDD of (MMSI, AISRecord)
val result: Dataset[Trajectory] = aisRecordsRDD
.groupSort (Ordering.by [AISRecord, Long] (_.timestamp.getTime)) // group by sort by
.mapStreamByKey {toTrajectoryIterator(_)}.values.toDS()

}

def toTrajectorylterator (itr: Iterator[AISRecord]): TrajectoryAggregator = {
val trajectorybuilder: TrajectoryBuilder = TrajBuilderFactory.newTrajectoryBuilder (conf)
new TrajectoryAggregator (itr, trajectorybuilder)

}

}

class TrajectoryAggregator (sortedAISrecords: Iterator[AISRecord],
trajectoryBuilder: TrajectoryBuilder) extends Iterator[Trajectory]
var nextTrajectory: Trajectory = createNext ()

override def hasNext (): Boolean = nextTrajectory != null

override def next (): Trajectory =

val currentResult: Trajectory = nextTrajectory
nextTrajectory = createNext ()

currentResult

}

def createNext () : Trajectory = { // create and return the next trajectory
while (sortedAISrecords.hasNext)
val record: AISRecord = sortedAISrecords.next ()

if (trajectoryBuilder.shouldTrajectoryInclude (record))
trajectoryBuilder.addRecord (record)

else { // finish the current trajectory and start a new one
val result:Trajectory = trajectoryBuilder.buildAndReset ()
trajectoryBuilder.addRecord (record)

return result

}
// all records have been processed. Create a final trajectory, if any
trajectoryBuilder.buildAndReset ()

}

}

trait TrajectoryBuilder {

def addRecord(r: AISRecord) // performs resampling

def shouldTrajectoryInclude (r: AISRecord): Boolean // handles gap and stop detection
def buildAndReset () : Trajectory

}




